
1

UNIT-IV

LINKED LISTS

TOPICS:-

1. Singly linked list
2. dynamically linked stacks and queues
3. polynomials using singly linked lists, using circularly linked lists,
4. single linked lists and its operations - insertion, deletion and searching
5. doubly linked lists and its operations

6. circular linked lists and its operations.

TOPIC 1: LINKED LIST AND ITS TYPES

A linked list is a linear data structure, in which the elements are not stored at contiguous
memory locations. The elements in a linked list are linked using pointers as shown in the
below image:

In simple words, a linked list consists of nodes where each node contains a data field and a
reference(link) to the next node in the list. A linked list is formed when many such nodes are
linked together to form a chain. Each node points to the next node present in the order. The
first node is always used as a reference to traverse the list and is called HEAD. The last
node points to NULL.

Declaring a Linked list :

In C language, a linked list can be implemented using structure and pointers .

struct LinkedList{
 int data;
 struct LinkedList *next;
 };

The above definition is used to create every node in the list. The data field stores the
element and the next is a pointer to store the address of the next node.

2

Types of linked list

Singly Linked List

• It is basic type of linked list.

• Each node contains data and pointer to next node.

• Last node’s pointer is null.

• Limitation of singly linked list is we can traverse only in one direction, forward
direction.

Singly Linked List

Circular Linked List

• Circular linked list is a singly linked list where last node points to first node in
the list.

• It does not contain null pointers like singly linked list.

• We can traverse only in one direction that is forward direction.

• It has the biggest advantage of time saving when we want to go from last node

to first node, it directly points to first node.

• A good example of an application where circular linked list should be used is

a timesharing problem solved by the operating system.

Circular Linked List

Doubly Linked list

• Each node of doubly linked list contains data and two pointers to point

previous (LPTR) and next (RPTR) node.

null D next C

next B next A

A next B next C next D next

3

• Main advantage of doubly linked list is we can traverse in any direction, forward

or reverse.

• Other advantage of doubly linked list is we can delete a node with little

trouble, since we have pointers to the previous and next nodes. A node on a

singly linked list cannot be removed unless we have the pointer to its

predecessor.

• Drawback of doubly linked list is it requires more memory compared to singly

linked list because we need an extra pointer to point previous node.

• L and R in image denotes left most and right most nodes in the list.

• Left link of L node and right link of R node is NULL, indicating the end of list for
each direction.

Circular Double linked list

Circular Doubly Linked List has properties of both doubly linked list and circular linked

list in which two consecutive elements are linked or connected by previous and next

pointer and the last node points to first node by next pointer and also the first node

points to last node by previous pointer.

4

Advantages:
 List can be traversed from both the directions i.e. from head to tail or from tail to

head.
 Jumping from head to tail or from tail to head is done in constant time O(1).
Disadvantages
 It takes slightly extra memory in each node to accommodate previous pointer.
 Lots of pointers involved while implementing or doing operations on a list. So,

pointers should be handled carefully otherwise data of the list may get lost.

----*****----

TOPIC 2: DYNAMICALLY LINKED STACKS AND QUEUES

Implementing Stack functionalities using Linked List

The major problem with the stack implemented using an array is, it works only for a fixed
number of data values. That means the amount of data must be specified at the beginning of
the implementation itself. Stack implemented using an array is not suitable, when we don't
know the size of data which we are going to use. A stack data structure can be implemented
by using a linked list data structure. The stack implemented using linked list can work for
an unlimited number of values. That means, stack implemented using linked list works for
the variable size of data. So, there is no need to fix the size at the beginning of the
implementation. The Stack implemented using linked list can organize as many data values
as we want.

In linked list implementation of a stack, every new element is inserted as 'top' element.
That means every newly inserted element is pointed by 'top'. Whenever we want to
remove an element from the stack, simply remove the node which is pointed by 'top' by
moving 'top' to its previous node in the list. The next field of the first element must be
always NULL.

5

Example

In the above example, the last inserted node is 99 and the first inserted node is 25. The
order of elements inserted is 25, 32,50 and 99.

Stack Operations using Linked List

To implement a stack using a linked list, we need to set the following things before
implementing actual operations.

 Step 1 - Include all the header files which are used in the program. And declare all
the user defined functions.

 Step 2 - Define a 'Node' structure with two members data and next.
 Step 3 - Define a Node pointer 'top' and set it to NULL.
 Step 4 - Implement the main method by displaying Menu with list of operations and

make suitable function calls in the main method.

push(value) - Inserting an element into the Stack

We can use the following steps to insert a new node into the stack...

 Step 1 - Create a newNode with given value.
 Step 2 - Check whether stack is Empty (top == NULL)
 Step 3 - If it is Empty, then set newNode → next = NULL.
 Step 4 - If it is Not Empty, then set newNode → next = top.
 Step 5 - Finally, set top = newNode.

pop() - Deleting an Element from a Stack

We can use the following steps to delete a node from the stack...

 Step 1 - Check whether stack is Empty (top == NULL).

6

 Step 2 - If it is Empty, then display "Stack is Empty!!! Deletion is not
possible!!!" and terminate the function

 Step 3 - If it is Not Empty, then define a Node pointer 'temp' and set it to 'top'.
 Step 4 - Then set 'top = top → next'.
 Step 5 - Finally, delete 'temp'. (free(temp)).

display() - Displaying stack of elements

We can use the following steps to display the elements (nodes) of a stack...

 Step 1 - Check whether stack is Empty (top == NULL).
 Step 2 - If it is Empty, then display 'Stack is Empty!!!' and terminate the function.
 Step 3 - If it is Not Empty, then define a Node pointer 'temp' and initialize with top.
 Step 4 - Display 'temp → data --->' and move it to the next node. Repeat the same

until temp reaches to the first node in the stack. (temp → next != NULL).
 Step 5 - Finally! Display 'temp → data ---> NULL'.

Implementing Queue functionalities using Linked List

The major problem with the queue implemented using an array is, It will work for an only
fixed number of data values. That means, the amount of data must be specified at the
beginning itself. Queue using an array is not suitable when we don't know the size of data
which we are going to use. A queue data structure can be implemented using a linked list
data structure. The queue which is implemented using a linked list can work for an
unlimited number of values. That means, queue using linked list can work for the variable
size of data (No need to fix the size at the beginning of the implementation). The Queue
implemented using linked list can organize as many data values as we want.

In linked list implementation of a queue, the last inserted node is always pointed by 'rear'
and the first node is always pointed by 'front'.

Example

In above example, the last inserted node is 50 and it is pointed by 'rear' and the first
inserted node is 10 and it is pointed by 'front'. The order of elements inserted is 10, 15, 22
and 50.

Operations

To implement queue using linked list, we need to set the following things before
implementing actual operations.

7

 Step 1 - Include all the header files which are used in the program. And declare all
the user defined functions.

 Step 2 - Define a 'Node' structure with two members data and next.
 Step 3 - Define two Node pointers 'front' and 'rear' and set both to NULL.
 Step 4 - Implement the main method by displaying Menu of list of operations and

make suitable function calls in the main method to perform user selected operation.

enQueue(value) - Inserting an element into the Queue

We can use the following steps to insert a new node into the queue...

 Step 1 - Create a newNode with given value and set 'newNode → next' to NULL.
 Step 2 - Check whether queue is Empty (rear == NULL)
 Step 3 - If it is Empty then, set front = newNode and rear = newNode.
 Step 4 - If it is Not Empty then, set rear → next = newNode and rear = newNode.

deQueue() - Deleting an Element from Queue

We can use the following steps to delete a node from the queue...

 Step 1 - Check whether queue is Empty (front == NULL).
 Step 2 - If it is Empty, then display "Queue is Empty!!! Deletion is not

possible!!!" and terminate from the function
 Step 3 - If it is Not Empty then, define a Node pointer 'temp' and set it to 'front'.
 Step 4 - Then set 'front = front → next' and delete 'temp' (free(temp)).

display() - Displaying the elements of Queue

We can use the following steps to display the elements (nodes) of a queue...

 Step 1 - Check whether queue is Empty (front == NULL).
 Step 2 - If it is Empty then, display 'Queue is Empty!!!' and terminate the function.
 Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize

with front.
 Step 4 - Display 'temp → data --->' and move it to the next node. Repeat the same

until 'temp' reaches to 'rear' (temp → next != NULL).
 Step 5 - Finally! Display 'temp → data ---> NULL'.

----****----

8

TOPIC 4: SINGLE LINKED LISTS AND ITS OPERATIONS

Single linked list is a sequence of elements in which every element has link to its next

element in the sequence.

Operations on Single Linked List

The following operations are performed on a Single Linked List

 Insertion
 Deletion
 Display

Before we implement actual operations, first we need to set up an empty list. First, perform
the following steps before implementing actual operations.

 Step 1 - Include all the header files which are used in the program.
 Step 2 - Declare all the user defined functions.
 Step 3 - Define a Node structure with two members data and next
 Step 4 - Define a Node pointer 'head' and set it to NULL.
 Step 5 - Implement the main method by displaying operations menu and make

suitable function calls in the main method to perform user selected operation.

Insertion

In a single linked list, the insertion operation can be performed in three ways. They are as
follows...

1. Inserting At Beginning of the list
2. Inserting At End of the list
3. Inserting At Specific location in the list

Inserting At Beginning of the list

We can use the following steps to insert a new node at beginning of the single linked list...

 Step 1 - Create a newNode with given value.
 Step 2 - Check whether list is Empty (head == NULL)
 Step 3 - If it is Empty then, set newNode→next = NULL and head = newNode.
 Step 4 - If it is Not Empty then, set newNode→next = head and head = newNode.

Inserting At End of the list

We can use the following steps to insert a new node at end of the single linked list...

 Step 1 - Create a newNode with given value and newNode → next as NULL.

9

 Step 2 - Check whether list is Empty (head == NULL).
 Step 3 - If it is Empty then, set head = newNode.
 Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.
 Step 5 - Keep moving the temp to its next node until it reaches to the last node in the

list (until temp → next is equal to NULL).
 Step 6 - Set temp → next = newNode.

Inserting At Specific location in the list (After a Node)

We can use the following steps to insert a new node after a node in the single linked list...

 Step 1 - Create a newNode with given value.
 Step 2 - Check whether list is Empty (head == NULL)
 Step 3 - If it is Empty then, set newNode → next = NULL and head = newNode.
 Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.
 Step 5 - Keep moving the temp to its next node until it reaches to the node after

which we want to insert the newNode (until temp1 → data is equal to location, here
location is the node value after which we want to insert the newNode).

 Step 6 - Every time check whether temp is reached to last node or not. If it is
reached to last node then display 'Given node is not found in the list!!! Insertion not
possible!!!' and terminate the function. Otherwise move the temp to next node.

 Step 7 - Finally, Set 'newNode → next = temp → next' and 'temp → next = newNode'

Deletion

In a single linked list, the deletion operation can be performed in three ways. They are as
follows...

1. Deleting from Beginning of the list
2. Deleting from End of the list
3. Deleting a Specific Node

Deleting from Beginning of the list

We can use the following steps to delete a node from beginning of the single linked list...

 Step 1 - Check whether list is Empty (head == NULL)
 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.
 Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with head.
 Step 4 - Check whether list is having only one node (temp → next == NULL)
 Step 5 - If it is TRUE then set head = NULL and delete temp (Setting Empty list

conditions)
 Step 6 - If it is FALSE then set head = temp → next, and delete temp.

10

Deleting from End of the list

We can use the following steps to delete a node from end of the single linked list...

 Step 1 - Check whether list is Empty (head == NULL)
 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.
 Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

initialize 'temp1' with head.
 Step 4 - Check whether list has only one Node (temp1 → next == NULL)
 Step 5 - If it is TRUE. Then, set head = NULL and delete temp1. And terminate the

function. (Setting Empty list condition)
 Step 6 - If it is FALSE. Then, set 'temp2 = temp1 ' and move temp1 to its next node.

Repeat the same until it reaches to the last node in the list. (until temp1 →
next == NULL)

 Step 7 - Finally, Set temp2 → next = NULL and delete temp1.

Deleting a Specific Node from the list

We can use the following steps to delete a specific node from the single linked list...

 Step 1 - Check whether list is Empty (head == NULL)
 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.
 Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

initialize 'temp1' with head.
 Step 4 - Keep moving the temp1 until it reaches to the exact node to be deleted or to

the last node. And every time set 'temp2 = temp1' before moving the 'temp1' to its
next node.

 Step 5 - If it is reached to the last node then display 'Given node not found in the list!
Deletion not possible!!!'. And terminate the function.

 Step 6 - If it is reached to the exact node which we want to delete, then check
whether list is having only one node or not

 Step 7 - If list has only one node and that is the node to be deleted, then
set head = NULL and delete temp1 (free(temp1)).

 Step 8 - If list contains multiple nodes, then check whether temp1 is the first node in
the list (temp1 == head).

 Step 9 - If temp1 is the first node then move the head to the next node (head = head
→ next) and delete temp1.

 Step 10 - If temp1 is not first node then check whether it is last node in the list
(temp1 → next == NULL).

 Step 11 - If temp1 is last node then set temp2 → next = NULL and
delete temp1 (free(temp1)).

 Step 12 - If temp1 is not first node and not last node then set temp2 → next = temp1
→ next and delete temp1 (free(temp1)).

11

Displaying a Single Linked List

We can use the following steps to display the elements of a single linked list...

 Step 1 - Check whether list is Empty (head == NULL)
 Step 2 - If it is Empty then, display 'List is Empty!!!' and terminate the function.
 Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with head.
 Step 4 - Keep displaying temp → data with an arrow (--->) until temp reaches to the

last node
 Step 5 - Finally display temp → data with arrow pointing to NULL (temp → data --->

NULL).

---***---

TOPIC 5: DOUBLE LINKED LIST AND ITS OPERATIONS

Double linked list is a sequence of elements in which every element has links to its previous

element and next element in the sequence.

Operations on Double Linked List

In a double linked list, we perform the following operations...

1. Insertion
2. Deletion
3. Display

Insertion

In a double linked list, the insertion operation can be performed in three ways as follows...

1. Inserting At Beginning of the list
2. Inserting At End of the list
3. Inserting At Specific location in the list

Inserting At Beginning of the list

We can use the following steps to insert a new node at beginning of the double linked list...

 Step 1 - Create a newNode with given value and newNode → previous as NULL.
 Step 2 - Check whether list is Empty (head == NULL)
 Step 3 - If it is Empty then, assign NULL to newNode → next and newNode to head.
 Step 4 - If it is not Empty then, assign head to newNode →

next and newNode to head.

12

Inserting At End of the list

We can use the following steps to insert a new node at end of the double linked list...

 Step 1 - Create a newNode with given value and newNode → next as NULL.
 Step 2 - Check whether list is Empty (head == NULL)
 Step 3 - If it is Empty, then assign NULL to newNode →

previous and newNode to head.
 Step 4 - If it is not Empty, then, define a node pointer temp and initialize with head.
 Step 5 - Keep moving the temp to its next node until it reaches to the last node in the

list (until temp → next is equal to NULL).
 Step 6 - Assign newNode to temp → next and temp to newNode → previous.

Inserting At Specific location in the list (After a Node)

We can use the following steps to insert a new node after a node in the double linked list...

 Step 1 - Create a newNode with given value.
 Step 2 - Check whether list is Empty (head == NULL)
 Step 3 - If it is Empty then, assign NULL to both newNode → previous & newNode →

next and set newNode to head.
 Step 4 - If it is not Empty then, define two node pointers temp1 & temp2 and

initialize temp1 with head.
 Step 5 - Keep moving the temp1 to its next node until it reaches to the node after

which we want to insert the newNode (until temp1 → data is equal to location, here
location is the node value after which we want to insert the newNode).

 Step 6 - Every time check whether temp1 is reached to the last node. If it is reached
to the last node then display 'Given node is not found in the list!!! Insertion not
possible!!!' and terminate the function. Otherwise move the temp1 to next node.

 Step 7 - Assign temp1 → next to temp2, newNode to temp1 →
next, temp1 to newNode → previous, temp2 to newNode →
next and newNode to temp2 → previous.

Deletion

In a double linked list, the deletion operation can be performed in three ways as follows...

1. Deleting from Beginning of the list
2. Deleting from End of the list
3. Deleting a Specific Node

Deleting from Beginning of the list

We can use the following steps to delete a node from beginning of the double linked list...

 Step 1 - Check whether list is Empty (head == NULL)

13

 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and
terminate the function.

 Step 3 - If it is not Empty then, define a Node pointer 'temp' and initialize with head.
 Step 4 - Check whether list is having only one node (temp → previous is equal

to temp → next)
 Step 5 - If it is TRUE, then set head to NULL and delete temp (Setting Empty list

conditions)
 Step 6 - If it is FALSE, then assign temp → next to head, NULL to head →

previous and delete temp.

Deleting from End of the list

We can use the following steps to delete a node from end of the double linked list...

 Step 1 - Check whether list is Empty (head == NULL)
 Step 2 - If it is Empty, then display 'List is Empty!!! Deletion is not possible' and

terminate the function.
 Step 3 - If it is not Empty then, define a Node pointer 'temp' and initialize with head.
 Step 4 - Check whether list has only one Node (temp → previous and temp →

next both are NULL)
 Step 5 - If it is TRUE, then assign NULL to head and delete temp. And terminate from

the function. (Setting Empty list condition)
 Step 6 - If it is FALSE, then keep moving temp until it reaches to the last node in the

list. (until temp → next is equal to NULL)
 Step 7 - Assign NULL to temp → previous → next and delete temp.

Deleting a Specific Node from the list

We can use the following steps to delete a specific node from the double linked list...

 Step 1 - Check whether list is Empty (head == NULL)
 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.
 Step 3 - If it is not Empty, then define a Node pointer 'temp' and initialize with head.
 Step 4 - Keep moving the temp until it reaches to the exact node to be deleted or to

the last node.
 Step 5 - If it is reached to the last node, then display 'Given node not found in the

list! Deletion not possible!!!' and terminate the fuction.
 Step 6 - If it is reached to the exact node which we want to delete, then check

whether list is having only one node or not
 Step 7 - If list has only one node and that is the node which is to be deleted then

set head to NULL and delete temp (free(temp)).
 Step 8 - If list contains multiple nodes, then check whether temp is the first node in

the list (temp == head).
 Step 9 - If temp is the first node, then move the head to the next node (head = head

→ next), set head of previous to NULL (head → previous = NULL) and delete temp.

14

 Step 10 - If temp is not the first node, then check whether it is the last node in the
list (temp → next == NULL).

 Step 11 - If temp is the last node then set temp of previous of next to NULL (temp →
previous → next = NULL) and delete temp (free(temp)).

 Step 12 - If temp is not the first node and not the last node, then
set temp of previous of next to temp of next (temp → previous → next = temp →
next), temp of next of previous to temp of previous (temp → next → previous = temp
→ previous) and delete temp (free(temp)).

Displaying a Double Linked List

We can use the following steps to display the elements of a double linked list...

 Step 1 - Check whether list is Empty (head == NULL)
 Step 2 - If it is Empty, then display 'List is Empty!!!' and terminate the function.
 Step 3 - If it is not Empty, then define a Node pointer 'temp' and initialize with head.
 Step 4 - Display 'NULL <--- '.
 Step 5 - Keep displaying temp → data with an arrow (<===>) until temp reaches to

the last node
 Step 6 - Finally, display temp → data with arrow pointing to NULL (temp → data --->

NULL).

---***---

TOPIC 6: CIRCULAR LINKED LIST AND ITS OPERATIONS

A circular linked list is a sequence of elements in which every element has a link to its next

element in the sequence and the last element has a link to the first element.

Operations

In a circular linked list, we perform the following operations...

1. Insertion
2. Deletion
3. Display

Before we implement actual operations, first we need to setup empty list. First perform the
following steps before implementing actual operations.

 Step 1 - Include all the header files which are used in the program.
 Step 2 - Declare all the user defined functions.
 Step 3 - Define a Node structure with two members data and next
 Step 4 - Define a Node pointer 'head' and set it to NULL.
 Step 5 - Implement the main method by displaying operations menu and make

suitable function calls in the main method to perform user selected operation.

15

Insertion

In a circular linked list, the insertion operation can be performed in three ways. They are as
follows...

1. Inserting At Beginning of the list
2. Inserting At End of the list
3. Inserting At Specific location in the list

Inserting At Beginning of the list

We can use the following steps to insert a new node at beginning of the circular linked list...

 Step 1 - Create a newNode with given value.
 Step 2 - Check whether list is Empty (head == NULL)
 Step 3 - If it is Empty then, set head = newNode and newNode→next = head .
 Step 4 - If it is Not Empty then, define a Node pointer 'temp' and initialize with

'head'.
 Step 5 - Keep moving the 'temp' to its next node until it reaches to the last node

(until 'temp → next == head').
 Step 6 - Set 'newNode → next =head', 'head = newNode' and 'temp → next = head'.

Inserting At End of the list

We can use the following steps to insert a new node at end of the circular linked list...

 Step 1 - Create a newNode with given value.
 Step 2 - Check whether list is Empty (head == NULL).
 Step 3 - If it is Empty then, set head = newNode and newNode → next = head.
 Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.
 Step 5 - Keep moving the temp to its next node until it reaches to the last node in the

list (until temp → next == head).
 Step 6 - Set temp → next = newNode and newNode → next = head.

Inserting At Specific location in the list (After a Node)

We can use the following steps to insert a new node after a node in the circular linked list...

 Step 1 - Create a newNode with given value.
 Step 2 - Check whether list is Empty (head == NULL)
 Step 3 - If it is Empty then, set head = newNode and newNode → next = head.
 Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.
 Step 5 - Keep moving the temp to its next node until it reaches to the node after

which we want to insert the newNode (until temp1 → data is equal to location, here
location is the node value after which we want to insert the newNode).

16

 Step 6 - Every time check whether temp is reached to the last node or not. If it is
reached to last node then display 'Given node is not found in the list!!! Insertion not
possible!!!' and terminate the function. Otherwise move the temp to next node.

 Step 7 - If temp is reached to the exact node after which we want to insert the
newNode then check whether it is last node (temp → next == head).

 Step 8 - If temp is last node then set temp → next = newNode and newNode →
next = head.

 Step 8 - If temp is not last node then set newNode → next = temp → next and temp →
next = newNode.

Deletion

In a circular linked list, the deletion operation can be performed in three ways those are as
follows...

1. Deleting from Beginning of the list
2. Deleting from End of the list
3. Deleting a Specific Node

Deleting from Beginning of the list

We can use the following steps to delete a node from beginning of the circular linked list...

 Step 1 - Check whether list is Empty (head == NULL)
 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.
 Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

initialize both 'temp1' and 'temp2' with head.
 Step 4 - Check whether list is having only one node (temp1 → next == head)
 Step 5 - If it is TRUE then set head = NULL and delete temp1 (Setting Empty list

conditions)
 Step 6 - If it is FALSE move the temp1 until it reaches to the last node. (until temp1

→ next == head)
 Step 7 - Then set head = temp2 → next, temp1 → next = head and delete temp2.

Deleting from End of the list

We can use the following steps to delete a node from end of the circular linked list...

 Step 1 - Check whether list is Empty (head == NULL)
 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.
 Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

initialize 'temp1' with head.
 Step 4 - Check whether list has only one Node (temp1 → next == head)

17

 Step 5 - If it is TRUE. Then, set head = NULL and delete temp1. And terminate from
the function. (Setting Empty list condition)

 Step 6 - If it is FALSE. Then, set 'temp2 = temp1 ' and move temp1 to its next node.
Repeat the same until temp1 reaches to the last node in the list. (until temp1 →
next == head)

 Step 7 - Set temp2 → next = head and delete temp1.

Deleting a Specific Node from the list

We can use the following steps to delete a specific node from the circular linked list...

 Step 1 - Check whether list is Empty (head == NULL)
 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.
 Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

initialize 'temp1' with head.
 Step 4 - Keep moving the temp1 until it reaches to the exact node to be deleted or to

the last node. And every time set 'temp2 = temp1' before moving the 'temp1' to its
next node.

 Step 5 - If it is reached to the last node then display 'Given node not found in the list!
Deletion not possible!!!'. And terminate the function.

 Step 6 - If it is reached to the exact node which we want to delete, then check
whether list is having only one node (temp1 → next == head)

 Step 7 - If list has only one node and that is the node to be deleted then
set head = NULL and delete temp1 (free(temp1)).

 Step 8 - If list contains multiple nodes then check whether temp1 is the first node in
the list (temp1 == head).

 Step 9 - If temp1 is the first node then set temp2 = head and keep moving temp2 to
its next node until temp2 reaches to the last node. Then set head = head →
next, temp2 → next = head and delete temp1.

 Step 10 - If temp1 is not first node then check whether it is last node in the list
(temp1 → next == head).

 Step 1 1- If temp1 is last node then set temp2 → next = head and
delete temp1 (free(temp1)).

 Step 12 - If temp1 is not first node and not last node then set temp2 → next = temp1
→ next and delete temp1 (free(temp1)).

Displaying a circular Linked List

We can use the following steps to display the elements of a circular linked list...

 Step 1 - Check whether list is Empty (head == NULL)
 Step 2 - If it is Empty, then display 'List is Empty!!!' and terminate the function.
 Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with head.
 Step 4 - Keep displaying temp → data with an arrow (--->) until temp reaches to the

last node

18

 Step 5 - Finally display temp → data with arrow pointing to head → data.

---***---

TOPIC 3: POLYNOMIALS USING SINGLE AND CIRCULAR LINKED LIST

Polynomials and Sparse Matrix are two important applications of arrays and linked lists. A

polynomial is composed of different terms where each of them holds a coefficient and an

exponent.

A polynomial p(x) is the expression in variable x which is in the form (axn + bxn-1 + …. + jx+

k), where a, b, c …., k fall in the category of real numbers and 'n' is non negative integer,

which is called the degree of polynomial.

An essential characteristic of the polynomial is that each term in the polynomial expression

consists of two parts:

 one is the coefficient

 other is the exponent

Example:

10x2 + 26x, here 10 and 26 are coefficients and 2, 1 is its exponential value.

Addition of two polynomials

Given two polynomial numbers represented by a linked list. Write a function that add
these lists means add the coefficients who have same variable powers.
Example:
Input:

 1st number = 5x2 + 4x1 + 2x0
 2nd number = -5x1 - 5x0
Output:
 5x2-1x1-3x0

19

Input:
 1st number = 5x3 + 4x2 + 2x0
 2nd number = 5x^1 - 5x^0
Output:
 5x3 + 4x2 + 5x1 - 3x0

Polynomials using circular linked list

1. Create two circular linked lists, where each node will consist of the coefficient, power
of x, power of y and pointer to the next node.

2. Traverse both the polynomials and check the following conditions:
 If power of x of 1st polynomial is greater than power of x of second polynomial

then store node of first polynomial in resultant polynomial and increase counter of
polynomial 1.

 If power of x of 1st polynomial is less than power of x of second polynomial then
store the node of second polynomial in resultant polynomial and increase counter
of polynomial 2.

 If power of x of 1st polynomial is equal to power of x of second polynomial and
power of y of 1st polynomial is greater than power of y of 2nd polynomial then
store the node of first polynomial in resultant polynomial and increase counter of
polynomial 1.

 If power of x of 1st polynomial is equal to power of x of second polynomial and
power of y of 1st polynomial is equal to power of y of 2nd polynomial then store
the sum of coefficient of both polynomial in resultant polynomial and increase
counter of both polynomial 1 and polynomial 2.

3. If there are nodes left to be traversed in 1st polynomial or in 2nd polynomial then
append them in resultant polynomial.

4. Finally, print the resultant polynomial.

----**** THE END****----

https://www.geeksforgeeks.org/circular-linked-list/

	Types of linked list
	Singly Linked List
	Circular Linked List
	Doubly Linked list

	Example
	Stack Operations using Linked List
	push(value) - Inserting an element into the Stack
	pop() - Deleting an Element from a Stack
	display() - Displaying stack of elements
	Implementing Queue functionalities using Linked List

	Example (1)
	Operations
	enQueue(value) - Inserting an element into the Queue
	deQueue() - Deleting an Element from Queue
	display() - Displaying the elements of Queue
	----****----

	Operations on Single Linked List
	Insertion
	Inserting At Beginning of the list
	Inserting At End of the list
	Inserting At Specific location in the list (After a Node)
	Deletion
	Deleting from Beginning of the list
	Deleting from End of the list
	Deleting a Specific Node from the list
	Displaying a Single Linked List
	Operations on Double Linked List
	Insertion (1)
	Inserting At Beginning of the list (1)
	Inserting At End of the list (1)
	Inserting At Specific location in the list (After a Node) (1)
	Deletion (1)
	Deleting from Beginning of the list (1)
	Deleting from End of the list (1)
	Deleting a Specific Node from the list (1)
	Displaying a Double Linked List
	Operations (1)
	Insertion (2)
	Inserting At Beginning of the list (2)
	Inserting At End of the list (2)
	Inserting At Specific location in the list (After a Node) (2)
	Deletion (2)
	Deleting from Beginning of the list (2)
	Deleting from End of the list (2)
	Deleting a Specific Node from the list (2)
	Displaying a circular Linked List

